

A Second-Order Approach to Learning with Instance-Dependent Label Noise

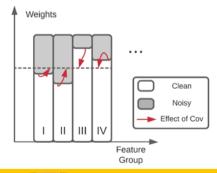
Zhaowei Zhu, Tongliang Liu, and Yang Liu

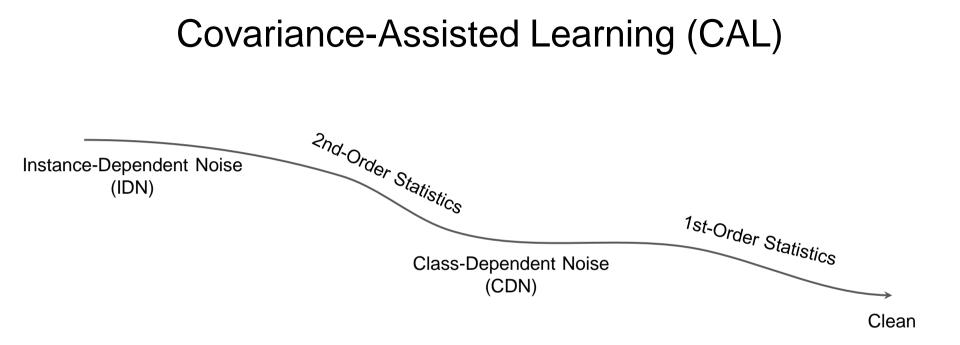
{**zwzhu**, yangliu}@ucsc.edu, tongliang.liu@sydney.edu.au

Code

REsponsible & Accountable Learning (REAL) @ University of California, Santa Cruz

https://github.com/UCSC-REAL

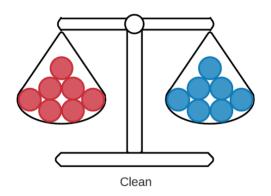




[1] N. Natarajan, et al. "Learning with noisy labels." *NeurIPS'13.*[2] T. Liu & D. Tao. "Classification with noisy labels by importance reweighting." *TPAMI'15.*[3] G. Patrini, et al. "Making deep neural networks robust to label noise: A loss correction approach." *CVPR'17.*

Motivation

- Two groups (not label classes) of instances with equal size
 - Empirical Risk Minimization (ERM) of instances from two groups: Lo



equal #instances contribute to clean loss

Clean: no noise

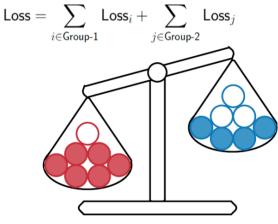
 \rightarrow

equal weights in ERM

Class-dependent label noise

CDN: equal noise

- → equal #instances contribute to clean loss
- → equal weights in ERM



Instance (group)-dependent noise

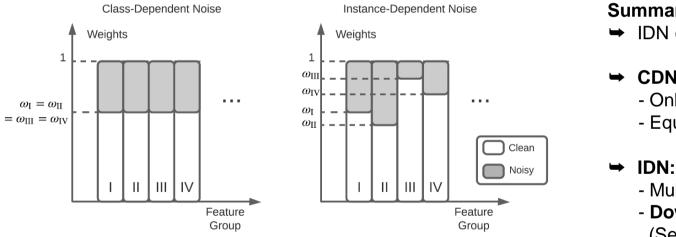
IDN: Group 2: larger noise

- → less #instances contribute to clean loss
- → smaller weights in ERM

UC SANTA CRUZ

Insufficiency of First-Order Statistics

Lemma: Peer Loss [4] is invariant to CDN: NoisyPL = ω · CleanPL



Summary:

IDN causes weights imbalances

CDN:

- Only one unknown constant ω .
- Equal for all features.

IDN:

- Multiple unknown constants ω_{g} .
- Down-weight high-noise features (Section 3.3 in our paper).

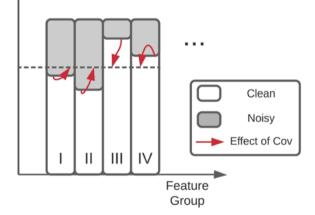
[4] Y. Liu & H. Guo. "Peer loss functions: Learning from noisy labels without knowing noise." ICML 20.

Covariance-Assisted Learning (CAL)

- Our method:
 - Peer Loss + Covariance (requires constructing **Bayes optimal dataset** for estimating *T*):

 $\ell_{\mathsf{CAL}}(f(x_n), \tilde{y}_n) = \ell_{\mathsf{PL}}(f(x_n), \tilde{y}_n) - \mathsf{Cov}(\mathsf{Noise Trans. } T, \mathsf{Model Pred.})$

Weights



Summary:

- ➡ CAL balances weights of each feature
 - High-noise (Group I, Group II): improve weights
 - Low-noise (Group III, Group IV): reduce weights

Covariance Peer Loss

IDN CDN Clean

➡ Theorem 3 (in our paper):

With perfect covariance estimates, CAL is robust to IDN

Schallenging!

(Details in the next slide)

Bayes Optimal Labels

Sely on **Bayes optimal** labels

- Unique
- Tractable

Example:

Туре	Prob. Each Class		
Clean	0.9	0.1	
Noisy	0.6	0.4	
Bayes opt.	1.0	0.0	

Algorithm (Sketch)

1. Construct \hat{D} (unbiased estimate of $D^* \sim D^*$) with sample sieve [5] 2. Estimate (unbiased) \hat{T} with \hat{D} (complexity O(SampleSize))

3. [Train DNN] Implement CAL in SGD (each point O(1) complexity)

Use CORES [5]:

A theoretically guaranteed sample sieve to find the Bayes optimal labels!

[5] H. Cheng, et al. "Learning with instance-dependent label noise: A sample sieve approach." ICLR'21.

Experiment

Table: Comparison of test accuracies	(%)	using different	methods.
--------------------------------------	-----	-----------------	----------

Method	Inst. CIFAR10		Inst. CIFAR100			
Methou	$\eta = 0.2$	$\eta = 0.4$	$\eta = 0.6$	$\eta = 0.2$	$\eta = 0.4$	$\eta = 0.6$
CE (Standard)	85.45±0.57	76.23±1.54	59.75±1.30	57.79±1.25	41.15±0.83	$25.68{\pm}1.55$
Forward T [2]	87.22±1.60	$79.37 {\pm} 2.72$	66.56±4.90	$58.19 {\pm} 1.37$	$42.80{\pm}1.01$	27.91 ± 3.35
T-Revision [3]						
Peer Loss [4]						
$CORES^2$ [5]	$91.14{\pm}0.46$	83.67±1.29	$77.68 {\pm} 2.24$	66.47±0.45	$58.99 {\pm} 1.49$	38.55 ± 3.25
CAL	92.01±0.75	$\textbf{84.96}{\pm}\textbf{1.25}$	$\textbf{79.82}{\pm}\textbf{2.56}$	$69.11{\pm}0.46$	$\textbf{63.17}{\pm}\textbf{1.40}$	$\textbf{43.58}{\pm\textbf{3.30}}$

Thank you !

[5] H. Cheng, et al. "Learning with instance-dependent label noise: A sample sieve approach." ICLR'21.